

Transportation Research Division

Technical Report 17-1

Experimental Evaluation and Design of Unfilled and Concrete-Filled FRP Composite Piles

Task 4A – Design Specifications

Final Report – Task 4A, January 2017

1. Report No. ME 17-1	2.	3. Recipient's Accession No.	
4. Title and Subtitle	•	5. Report Date	
Experimental Evaluation and Design of	Unfilled and Concrete-	August 2015	
Filled FRP Composite Piles			
Task 4A – Design Specifications		6.	
6 - I			
7. Author(s)		8. Performing Organization Rep	oort No.
Dale Lawrence		AEWC Report Number 1	199.4
Roberto Lopez-Anido		-	
Thomas Sandford			
9. Performing Organization Name and Address		10. Project/Task/Work Unit No.	
University of Maine – Advanced Structu	res and Composites		
Center	I		
Contor		11. Contract © or Grant (G) No	
		Contract # 20130731*534	5
		20130751 552	
12. Sponsoring Organization Name and Address		13. Type of Report and Period O	Covered
Maine Department of Transportation		JI JI II I	
		14. Sponsoring Agency Code	
15. Supplementary Notes			
16. Abstract (Limit 200 words)			
The overall goal of this project is the ex	perimental evaluation and	design of unfilled and concr	rete-filled FRP
The overall goal of this project is the excomposite piles for load-bearing in bridge	perimental evaluation and oges. This report covers Tas	design of unfilled and concr k 4A, Design Specifications	rete-filled FRP s.
The overall goal of this project is the excomposite piles for load-bearing in bridg	perimental evaluation and o ges. This report covers Tas	design of unfilled and concr k 4A, Design Specifications	rete-filled FRP s.
The overall goal of this project is the ex composite piles for load-bearing in bridg Structural design specifications are base	perimental evaluation and o ges. This report covers Tas d on the AASHTO LRFD	design of unfilled and concr k 4A, Design Specifications Bridge Design Specificatior	rete-filled FRP s. ns Article
The overall goal of this project is the ex- composite piles for load-bearing in bridg Structural design specifications are base 5.13.4 – Concrete Piles (Reference 1). T	perimental evaluation and o ges. This report covers Tas d on the AASHTO LRFD his technical report has be	design of unfilled and concr k 4A, Design Specifications Bridge Design Specificatior en prepared to reflect the res	rete-filled FRP s. ns Article sults of field
The overall goal of this project is the ex- composite piles for load-bearing in bridg Structural design specifications are base 5.13.4 – Concrete Piles (Reference 1). T and laboratory testing presented by Law	perimental evaluation and o ges. This report covers Tas d on the AASHTO LRFD his technical report has bee rence (Reference 2).	design of unfilled and concr k 4A, Design Specifications Bridge Design Specificatior en prepared to reflect the res	rete-filled FRP s. ns Article sults of field
The overall goal of this project is the ex- composite piles for load-bearing in bridg Structural design specifications are base 5.13.4 – Concrete Piles (Reference 1). T and laboratory testing presented by Law	perimental evaluation and oges. This report covers Tas d on the AASHTO LRFD his technical report has been rence (Reference 2).	design of unfilled and concr k 4A, Design Specifications Bridge Design Specificatior en prepared to reflect the res	rete-filled FRP s. ns Article sults of field
The overall goal of this project is the ex- composite piles for load-bearing in bridg Structural design specifications are base 5.13.4 – Concrete Piles (Reference 1). T and laboratory testing presented by Law Geotechnical design specifications are p	perimental evaluation and oges. This report covers Tas d on the AASHTO LRFD his technical report has been rence (Reference 2).	design of unfilled and concr k 4A, Design Specifications Bridge Design Specificatior en prepared to reflect the res ne AASHTO LRFD Bridge	rete-filled FRP s. ns Article sults of field Design
The overall goal of this project is the ex- composite piles for load-bearing in bridg Structural design specifications are base 5.13.4 – Concrete Piles (Reference 1). T and laboratory testing presented by Law Geotechnical design specifications are p Specifications Articles 10.5 - Limit Stat	perimental evaluation and oges. This report covers Tas d on the AASHTO LRFD his technical report has been rence (Reference 2). roposed modifications to the sand Resistance Factors a	design of unfilled and concr k 4A, Design Specifications Bridge Design Specificatior en prepared to reflect the res the AASHTO LRFD Bridge and 10.7 – Driven Piles (Ref	rete-filled FRP s. ns Article sults of field Design ference 1).
The overall goal of this project is the ex- composite piles for load-bearing in bridg Structural design specifications are base 5.13.4 – Concrete Piles (Reference 1). T and laboratory testing presented by Law Geotechnical design specifications are p Specifications Articles 10.5 - Limit State	perimental evaluation and oges. This report covers Tas d on the AASHTO LRFD his technical report has been rence (Reference 2). roposed modifications to the es and Resistance Factors a	design of unfilled and concr k 4A, Design Specifications Bridge Design Specification en prepared to reflect the res ne AASHTO LRFD Bridge and 10.7 – Driven Piles (Ref	rete-filled FRP s. ns Article sults of field Design ference 1).
The overall goal of this project is the ex- composite piles for load-bearing in bridg Structural design specifications are base 5.13.4 – Concrete Piles (Reference 1). T and laboratory testing presented by Law Geotechnical design specifications are p Specifications Articles 10.5 - Limit State	perimental evaluation and o ges. This report covers Tas d on the AASHTO LRFD his technical report has bee rence (Reference 2). roposed modifications to the es and Resistance Factors a	design of unfilled and concr k 4A, Design Specifications Bridge Design Specification en prepared to reflect the res ne AASHTO LRFD Bridge and 10.7 – Driven Piles (Ref	rete-filled FRP s. ns Article sults of field Design ference 1).
The overall goal of this project is the ex- composite piles for load-bearing in bridg Structural design specifications are base 5.13.4 – Concrete Piles (Reference 1). T and laboratory testing presented by Law Geotechnical design specifications are p Specifications Articles 10.5 - Limit State	perimental evaluation and or ges. This report covers Tas d on the AASHTO LRFD his technical report has been rence (Reference 2). roposed modifications to the es and Resistance Factors a	design of unfilled and concr k 4A, Design Specifications Bridge Design Specificatior en prepared to reflect the res ne AASHTO LRFD Bridge and 10.7 – Driven Piles (Ref	rete-filled FRP s. ns Article sults of field Design ference 1).
The overall goal of this project is the ex- composite piles for load-bearing in bridg Structural design specifications are base 5.13.4 – Concrete Piles (Reference 1). T and laboratory testing presented by Law Geotechnical design specifications are p Specifications Articles 10.5 - Limit State	perimental evaluation and or ges. This report covers Tas d on the AASHTO LRFD his technical report has been rence (Reference 2). roposed modifications to the es and Resistance Factors a	design of unfilled and concr k 4A, Design Specifications Bridge Design Specificatior en prepared to reflect the res ne AASHTO LRFD Bridge and 10.7 – Driven Piles (Ref	rete-filled FRP s. ns Article sults of field Design ference 1).
The overall goal of this project is the ex- composite piles for load-bearing in bridg Structural design specifications are base 5.13.4 – Concrete Piles (Reference 1). T and laboratory testing presented by Law Geotechnical design specifications are p Specifications Articles 10.5 - Limit State	perimental evaluation and or ges. This report covers Tas d on the AASHTO LRFD This technical report has been rence (Reference 2). roposed modifications to the es and Resistance Factors a	design of unfilled and concr k 4A, Design Specifications Bridge Design Specificatior en prepared to reflect the res ne AASHTO LRFD Bridge and 10.7 – Driven Piles (Ref	rete-filled FRP s. ns Article sults of field Design ference 1).
The overall goal of this project is the ex- composite piles for load-bearing in bridg Structural design specifications are base 5.13.4 – Concrete Piles (Reference 1). T and laboratory testing presented by Law Geotechnical design specifications are p Specifications Articles 10.5 - Limit State	perimental evaluation and o ges. This report covers Tas d on the AASHTO LRFD This technical report has bee rence (Reference 2). roposed modifications to the es and Resistance Factors a	design of unfilled and concr k 4A, Design Specifications Bridge Design Specificatior en prepared to reflect the res ne AASHTO LRFD Bridge and 10.7 – Driven Piles (Ref	rete-filled FRP s. ns Article sults of field Design ference 1).
The overall goal of this project is the ex- composite piles for load-bearing in bridg Structural design specifications are base 5.13.4 – Concrete Piles (Reference 1). T and laboratory testing presented by Law Geotechnical design specifications are p Specifications Articles 10.5 - Limit State	perimental evaluation and o ges. This report covers Tas d on the AASHTO LRFD This technical report has bee rence (Reference 2). roposed modifications to the es and Resistance Factors a	design of unfilled and concr k 4A, Design Specifications Bridge Design Specificatior en prepared to reflect the res ne AASHTO LRFD Bridge and 10.7 – Driven Piles (Ref	rete-filled FRP s. ns Article sults of field Design ference 1).
The overall goal of this project is the ex- composite piles for load-bearing in bridg Structural design specifications are base 5.13.4 – Concrete Piles (Reference 1). T and laboratory testing presented by Law Geotechnical design specifications are p Specifications Articles 10.5 - Limit State	perimental evaluation and o ges. This report covers Tas d on the AASHTO LRFD This technical report has bee rence (Reference 2). roposed modifications to the es and Resistance Factors a	design of unfilled and concr k 4A, Design Specifications Bridge Design Specificatior en prepared to reflect the res ne AASHTO LRFD Bridge and 10.7 – Driven Piles (Ref	rete-filled FRP s. ns Article sults of field Design ference 1).
The overall goal of this project is the ex- composite piles for load-bearing in bridg Structural design specifications are base 5.13.4 – Concrete Piles (Reference 1). T and laboratory testing presented by Law Geotechnical design specifications are p Specifications Articles 10.5 - Limit State	perimental evaluation and o ges. This report covers Tas d on the AASHTO LRFD This technical report has bee rence (Reference 2). roposed modifications to the es and Resistance Factors a	design of unfilled and concr k 4A, Design Specifications Bridge Design Specificatior en prepared to reflect the res ne AASHTO LRFD Bridge and 10.7 – Driven Piles (Ref	rete-filled FRP s. ns Article sults of field Design ference 1).
The overall goal of this project is the ex- composite piles for load-bearing in bridg Structural design specifications are base 5.13.4 – Concrete Piles (Reference 1). T and laboratory testing presented by Law Geotechnical design specifications are p Specifications Articles 10.5 - Limit State	perimental evaluation and o ges. This report covers Tas d on the AASHTO LRFD this technical report has bee rence (Reference 2). roposed modifications to the es and Resistance Factors a	design of unfilled and concr k 4A, Design Specifications Bridge Design Specification en prepared to reflect the res ne AASHTO LRFD Bridge and 10.7 – Driven Piles (Ref	rete-filled FRP s. ns Article sults of field Design ference 1).
The overall goal of this project is the ex- composite piles for load-bearing in bridg Structural design specifications are base 5.13.4 – Concrete Piles (Reference 1). T and laboratory testing presented by Law Geotechnical design specifications are p Specifications Articles 10.5 - Limit State	perimental evaluation and o ges. This report covers Tas d on the AASHTO LRFD his technical report has bee rence (Reference 2). roposed modifications to the es and Resistance Factors a	design of unfilled and concr k 4A, Design Specifications Bridge Design Specification en prepared to reflect the res ne AASHTO LRFD Bridge and 10.7 – Driven Piles (Ref	rete-filled FRP s. ns Article sults of field Design ference 1).
The overall goal of this project is the ex- composite piles for load-bearing in bridg Structural design specifications are base 5.13.4 – Concrete Piles (Reference 1). T and laboratory testing presented by Law Geotechnical design specifications are p Specifications Articles 10.5 - Limit State	perimental evaluation and o ges. This report covers Tas d on the AASHTO LRFD his technical report has bee rence (Reference 2). roposed modifications to the es and Resistance Factors a	design of unfilled and concr k 4A, Design Specifications Bridge Design Specification en prepared to reflect the res ne AASHTO LRFD Bridge and 10.7 – Driven Piles (Ref	rete-filled FRP s. ns Article sults of field Design ference 1).
The overall goal of this project is the ex- composite piles for load-bearing in bridg Structural design specifications are base 5.13.4 – Concrete Piles (Reference 1). T and laboratory testing presented by Law Geotechnical design specifications are p Specifications Articles 10.5 - Limit State	perimental evaluation and o ges. This report covers Tas d on the AASHTO LRFD this technical report has bee rence (Reference 2). roposed modifications to the es and Resistance Factors a	design of unfilled and concr k 4A, Design Specifications Bridge Design Specification en prepared to reflect the res ne AASHTO LRFD Bridge and 10.7 – Driven Piles (Ref 18. Availability Statement	rete-filled FRP s. ns Article sults of field Design ference 1).
The overall goal of this project is the ex- composite piles for load-bearing in bridg Structural design specifications are base 5.13.4 – Concrete Piles (Reference 1). T and laboratory testing presented by Law Geotechnical design specifications are p Specifications Articles 10.5 - Limit State 17. Document Analysis/Descriptors Bridge piles, fiber reinforced polymer co	perimental evaluation and o ges. This report covers Tas d on the AASHTO LRFD this technical report has bee rence (Reference 2). roposed modifications to the es and Resistance Factors a	design of unfilled and concr k 4A, Design Specifications Bridge Design Specification en prepared to reflect the res the AASHTO LRFD Bridge and 10.7 – Driven Piles (Ref 18. Availability Statement	rete-filled FRP s. ns Article sults of field Design ference 1).
The overall goal of this project is the ex- composite piles for load-bearing in bridg Structural design specifications are base 5.13.4 – Concrete Piles (Reference 1). T and laboratory testing presented by Law Geotechnical design specifications are p Specifications Articles 10.5 - Limit State 17. Document Analysis/Descriptors Bridge piles, fiber reinforced polymer co specifications	perimental evaluation and o ges. This report covers Tas d on the AASHTO LRFD this technical report has bee rence (Reference 2). roposed modifications to the es and Resistance Factors a	design of unfilled and concr k 4A, Design Specifications Bridge Design Specification en prepared to reflect the res the AASHTO LRFD Bridge and 10.7 – Driven Piles (Ref	rete-filled FRP s. ns Article sults of field Design ference 1).
The overall goal of this project is the ex- composite piles for load-bearing in bridg Structural design specifications are base 5.13.4 – Concrete Piles (Reference 1). T and laboratory testing presented by Law Geotechnical design specifications are p Specifications Articles 10.5 - Limit State 17. Document Analysis/Descriptors Bridge piles, fiber reinforced polymer co specifications	perimental evaluation and o ges. This report covers Tas d on the AASHTO LRFD his technical report has bee rence (Reference 2). roposed modifications to the es and Resistance Factors a	design of unfilled and concr k 4A, Design Specifications Bridge Design Specification en prepared to reflect the res ne AASHTO LRFD Bridge and 10.7 – Driven Piles (Ref	rete-filled FRP s. ns Article sults of field Design ference 1).
The overall goal of this project is the ex- composite piles for load-bearing in bridg Structural design specifications are base 5.13.4 – Concrete Piles (Reference 1). T and laboratory testing presented by Law Geotechnical design specifications are p Specifications Articles 10.5 - Limit State 17. Document Analysis/Descriptors Bridge piles, fiber reinforced polymer co specifications 19. Security Class (this report)	perimental evaluation and or ges. This report covers Tas d on the AASHTO LRFD this technical report has been rence (Reference 2). roposed modifications to the es and Resistance Factors a omposites, design	design of unfilled and concr k 4A, Design Specifications Bridge Design Specification en prepared to reflect the res ne AASHTO LRFD Bridge and 10.7 – Driven Piles (Ref 18. Availability Statement	rete-filled FRP s. ns Article sults of field Design ference 1). 22. Price
The overall goal of this project is the ex- composite piles for load-bearing in bridg Structural design specifications are base 5.13.4 – Concrete Piles (Reference 1). T and laboratory testing presented by Law Geotechnical design specifications are p Specifications Articles 10.5 - Limit State 17. Document Analysis/Descriptors Bridge piles, fiber reinforced polymer co specifications 19. Security Class (this report)	perimental evaluation and or ges. This report covers Tas d on the AASHTO LRFD this technical report has been rence (Reference 2). roposed modifications to the es and Resistance Factors a omposites, design	design of unfilled and concr k 4A, Design Specifications Bridge Design Specification en prepared to reflect the res the AASHTO LRFD Bridge and 10.7 – Driven Piles (Ref 18. Availability Statement	rete-filled FRP s. ns Article sults of field Design ference 1).

Technical Report

Draft LRFD Design Specifications for Fiber Reinforced Polymer (FRP) Concrete Piles

Submitted by:

Dale Lawrence, Roberto Lopez-Anido¹, and Thomas Sandford

Advanced Structures and Composites Center, University of Maine

Project Task 1199.4

Project: Experimental Evaluation and Design of Unfilled and

Concrete-Filled FRP Composite Piles

Prepared for: Dale Peabody P.E. Director of Transportation Research Maine Dept. of Transportation 16 State House Station Augusta, Maine 04333

August 11th, 2015

¹ Department of Civil and Environmental Engineering, University of Maine <u>rla@maine.edu</u> Phone: (207) 581-2119

Table of Contents

Summary1	
References 1	
Section 1 Structural Design Specifications	,
1.1 General	,
1.2 Splices	,
1.3 Precast FRP Piles	,
1.4 Pile Dimensions	,
1.4.1 Reinforcing	,
1.5 Cast-in-Place FRP Piles	
1.5.1 Pile Dimensions	
1.5.2 Reinforcing	
1.6 Seismic Requirements	
1.7 Flexure	
1.8 Axial Compression	
1.9 Shear	
1.10 Combined Axial Compression and Flexure4	
Section 2 Geotechnical Design Specifications)
$10.7.3.8.6b - \alpha$ -Method	;
10.7.3.8.6e – Tipe Resistance in Cohesive Soils)
10.7.3.8.6f - Meyerhof Method)
10.7.3.13.5 – FRP Piles	'
10.7.5 – Corrosion and Deterioration	;
10.7.8 – Drivability Analysis	;
10.5.5.2.3 - Resistance Factors for Driven Piles)
Appendix A Example Structural Pile Calculation	
Appendix B Example Geotechnical Capacity Pile Calculation)

Summary

Structural design specifications are based on the AASHTO LRFD Bridge Design Specifications Article 5.13.4 – Concrete Piles (Reference 1). This technical report has been prepared to reflect the results of field and laboratory testing presented by Lawrence (Reference 2).

Geotechnical design specifications are proposed modifications to the AASHTO LRFD Bridge Design Specifications Articles 10.5 - Limit States and Resistance Factors and 10.7 – Driven Piles (Reference 1).

References

- 1. AASHTO. LRFD Bridge Design Specifications, Seventh Edition, U.S. Customary Units, 2014.
- 2. Lawrence, D. "Experimental Evaluation of Fiber Reinforced Polymer Piles in Load Bearing Applications, M.S. Thesis, University of Maine, 2015.
- 3. AASHTO. LRFD Guide Specifications for Design of Concrete-Filled FRP Tubes for Flexural and Axial Members, 2012.
- 4. U.S. Navy. Design Manual: Foundations and Earth Structures (NAVFAC DM7), 1986.
- 5. Vesic, A.S. Design of Pile Foundations. Transportation Research Board, NCHRP 42, 1977.
- Meyerhof, G.G. Bearing Capacity and Settlement of Pile Foundations. Journal of the Geotechnical Engineering Division. Proceedings of the American Society of Civil Engineers, Vol. 102, No. GT3, 1976.
- 7. Das, B.M. Principles of Foundation Engineering, 7th Edition. Cengage Learning, 2011.
- 8. Rowe, R.K. and Armitage, H.H. A Design Method for Drilled Piers in Soft Rock. Canadian Geotechnical Journal. Vol. 24, pp. 126-142, 1987.
- 9. Sandford, T.C. and Stuart, C. Development and Evaluation of Pile "High Strain Dynamic Test Database" to Improve Driven Pile Capacity Estimates: Phase II Report, University of Maine Report to Maine Department of Transportation, 2013.

Section 1 Structural Design Specifications

1.1 General

All loads resisted by the footing and the weight of the footing itself shall be assumed to be transmitted to the piles. Piles installed by driving shall be designed to resist driving and handling forces. For transportation and erection, a precast pile should be designed for not less than 1.5 times its selfweight.

Any portion of a pile where lateral support adequate to prevent buckling may not exist at all times shall be designed as a column.

The points or zones of fixity for resistance to lateral loads and moments shall be determined by an analysis of the soil properties, as specified in Article 10.7.3.13.4. FRP piles shall be embedded into footings or pile caps, as specified in Article 10.7.1.1. Anchorage reinforcement shall consist of either an extension of the pile reinforcement or the use of dowels. Uplift forces or stresses induced by flexure shall be resisted by the reinforcement. The steel ratio for anchorage reinforcement shall not be less than 0.005, and the number of bars shall not be less than four. The reinforcement shall be developed sufficiently to resist a force of $1.25F_vA_s$.

In addition to the requirements specified in Sections 1.1 through 1.5, piles used in the seismic zones shall conform to the requirements specified in Article 5.13.4.6.

1.2 Splices

Splicing of FRP piles shall not be allowed, unless approved by the Engineer of Record.

1.3 Precast FRP Piles

1.4 Pile Dimensions

Precast FRP piles shall be of uniform section.

1.4.1 Reinforcing

Reinforcing shall be designed to withstand all tensile driving forces. Any potential longitudinal reinforcement provided by the FRP shell shall be neglected in tension during driving. Changed "concrete piles" to "FRP piles."

Removed tapered piles.

Driving concrete filled FRP piles without additional longitudinal reinforcement has been shown to cause cracking in the concrete. This led to a loss of composite action during flexure.

1.5 Cast-in-Place FRP Piles

Piles cast in FRP shells lowered into pre-drilled holes may be used only where soil conditions permit.

Shells for cast-in-place piles shall be of sufficient thickness and strength to hold their form and to show no harmful distortion during driving or after adjacent shells have been driven. The contract documents shall stipulate that alternative designs of the shell need to be approved by the Engineer before any driving is done.

1.5.1 Pile Dimensions

Cast-in-place FRP piles shall have a uniform section.

1.5.2 Reinforcing

Cast-in-place FRP piles may be constructed without reinforcing bars, provided that they do not receive any hammer blows from pile driving, including restrikes or additional driving to mitigate heaving. Piles subjected to tensile forces may also require reinforcing bars to prevent cracking in the concrete.

For cast-in-place concrete piling, clear distance between parallel longitudinal, and parallel transverse reinforcing bars shall not be less than five times the maximum aggregate size or 5.0 in., except as noted in Article 5.13.4.6 for seismic requirements.

1.6 Seismic Requirements

See Article 5.13.4.6 for seismic requirements.

1.7 Flexure

The moment capacity of a concrete filled FRP tube shall be calculated according to the AASHTO LRFD Guide Specifications for Design of Concrete-Filled FRP Tubes for Flexural and Axial Members Article 2.9 (Reference 3).

A material bias factor shall be applied to the ultimate strain and strength of the FRP laminate. The bias factor shall be applied concurrently with the environmental reduction factor, C_E , as in Article 2.6.1.2 (Reference 3). This factor is used to account for the decrease in material properties seen between coupon level tests and full scale pile tests. The material bias factors shall be:

Cast-in-place FRP piles include piles cast in driven FRP shells that remain in place or FRP shells placed in drilled holes.

Seismic requirements for concrete piles shall apply to FRP piles.

Material bias factors are taken as the ratio of strain at failure for full-scale pile tests to the strain at failure during coupon level tests conducted by Lawrence (Reference 2). Hollow piles tested in flexure failed in compression between 19.4% and 25.7% of the coupon strain. Concrete-filled piles tested in flexure failed in tension between 38.2% and 66.2% of the coupon strain.

• For compressive properties

 $\gamma_c=0.2$

• For tensile properties

 $\gamma_t = 0.4$

The material bias factors may be increased if the behavior of the FRP piles is verified using full scale testing.

1.8 Axial Compression

The axial compressive resistance of the FRP pile shall be calculated according to the AASHTO LRFD Guide Specifications for Design of Concrete-Filled FRP Tubes for Flexural and Axial Members (Reference 3) Article 2.10.

The material bias factors, γ_t and γ_c , found during flexural testing shall also be applied to material properties for the axial compressive resistance.

1.9 Shear

The shear resistance of the FRP pile shall be calculated according to the AASHTO LRFD Guide Specifications for Design of Concrete-Filled FRP Tubes for Flexural and Axial Members (Reference 3) Article 2.12.

1.10 Combined Axial Compression and Flexure

Piles designed for combined axial compression and flexure shall be designed according to the AASHTO LRFD Guide Specifications for the Design of Concrete-Filled FRP Tubes for Flexural and Axial Members (Reference 3) Article 2.11.

Interaction diagrams are presented in Figures 1 and 2 for FRP piles tested by Lawrence (Reference 2). These piles are nominally 24 in in diameter with 1 in and 0.5 in thick FRP shells. Example pile calculations are presented in Appendix A.

Example pile calculations are presented in Appendix A.

Example pile calculations are presented in Appendix A.

Figure 1: FRP Pile Interaction Diagram – Nominal Strength

The FRP pile nominal strengths in Figure 1 do not include environmental reduction factors, material bias factors, or LRFD phi factors. Flexural tests results by Lawrence (Reference 2) are included on the x axis for comparison with theoretical nominal strengths. All test data is for $\frac{1}{2}$ wall, concrete-filled FRP piles.

Figure 2: FRP Pile Interaction Diagram – Design Strengths

The FRP pile design strengths in Figure 2 include the environmental reduction factors and LRFD phi factors proposed in Reference 3, and the material bias factors proposed in this specification.

Section 2 Geotechnical Design Specifications

Amend the following Articles of the AASHTO LRFD Bridge Design Specifications (Reference 1).

10.7.3.8.6b - a-Method

10.7.3.8.6e - Tipe Resistance in Cohesive Soils

10.7.3.8.6f - Meyerhof Method

The effective stress method proposed by Meyerhof and presented in NavFAC (Reference 4) shall be used to calculate the side resistance of FRP piles in cohesionless soils. The Meyerhof method uses the following relationship:

$$Q_s = K_h \sigma'_v \tan(\delta)$$

where:

 Q_s = side resistance of the pile

 K_h = earth pressure coefficient

 δ = interface friction angle

Earth pressure coefficient values can be found in Reference 4.

Limiting values of effective overburden stress associated with the Meyerhof Method (Reference 5) shall be taken as the effective stress at z_c for:

$R_D \leq 30\%$	$z_c = 10D$
$R_D \geq 70\%$	$z_{c} = 20D$

where:

 R_D = relative density of the soil

D = pile diameter

 z_c = depth at limiting effective overburden stress

The alpha method is recommended for the side capacity of FRP piles in cohesive material.

The tip capacity shall be taken as $9*S_u$ as described in Article 10.7.3.8.6e.

Remove Article 10.7.3.8.6f – Nordlund/Thurman Method in Cohesionless Soils and replace with 10.7.3.8.6f – Meyerhof Method

The Meyerhof Method includes a limiting overburden stress. Methods for calculating the limiting overburden stress are outlined in NavFAC (Reference 4).

Peak interface friction angles were found to range from 28.2 to 32.6 degrees and constant volume interface friction angles were found to range from 26.3 to 32.1 degrees for piles tested by Lawrence (Reference 2).

NavFAC (Reference 4) uses a limiting stress at $z_c=20D$ for all relative densities.

The Meyerhof Method (Reference 6) is recommended for the end capacity in cohesionless soils using the following relationship:

$$Q_p = N_q^* \sigma_v' \le N_q^* \sigma_l$$

where:

 $Q_p =$ end resistance of the pile

 N_q^* = bearing capacity factor for driven piles

 σ_1 = limiting stress at pile tip defined as:

$$\sigma_l' = \tan\left(\varphi\right) \tag{ksf}$$

Values for N_q^* are calculated as (Reference 7 from Reference 6):

φ	N _q *
30	57
31	68
32	81
33	96
34	115
35	143
36	168
37	194
38	231
39	276
40	346
41	420
42	525
43	650
44	780
45	930

Note that the N_q^* for the Meyerhof Method is different from N_q^* presented by AASHTO for the Nordlund Method.

10.7.3.13.5 - FRP Piles

The nominal axial compression resistance for FRP piles shall be as specified in Section 1.

The Intact Rock Method (IRM) by Armitage and Rowe (Reference 8) shall be used to calculate end resistance bearing pressure on bedrock.

 $q_p = 2.5q_u$

where:

 q_p = end bearing pressure capacity of the bedrock

 q_u = unconfined compressive strength of the bedrock.

For principal Maine bedrocks, the following unconfined compressive strengths are typical (Reference 9).

Rock Type	Unconfined Compressive Strength, q _u (ksi)
Igneous	5.4
Metamorphic	5.2
Sedimentary	4.4

Added Article 10.7.3.13.5

For open-ended piles, multiply the end bearing pressure capacity obtained by IRM by the crosssectional area of the shoe to obtain the end capacity. For filled pipe piles, the cross-sectional area to be used for the end capacity is the total end crosssectional area including filling area divided by 9.3 to account for discontinuous contact between the pile and the bedrock surface.

Preliminary estimates of the effective length of laterally unsupported piles should be determined based on the provisions in Article 10.7.3.13.4 using Davison and Robinson. Detailed evaluations of effective length, depth to fixity and lateral pile resistance shall be performed considering the effects of soil-structure interaction in accordance with LRFD Article 10.7.3.12.

10.7.5 - Corrosion and Deterioration

Corrosion and deterioration shall be accounted for using the environmental reduction factor, C_E , in accordance with the AASHTO LRFD Guide Specifications for Design of Concrete-Filled FRP Tubes for Flexural and Axial Members (Reference 3). This factor is implemented in the structural design of FRP piles outlined in Section 1.

10.7.8 - Drivability Analysis

Cast-in-Place FRP Piles

In compression:

$$\sigma_{dr} = \varphi_{da}(0.10f_{fcu}) \tag{10.7.8-8}$$

where:

 f_{fcu} = compressive strength of the FRP shell (ksi)

Precast FRP Piles

• In tension:

$$\sigma_{dr} = 0.7\varphi_{da}f_y \tag{10.7.8-9}$$

where:

 f_y = yield strength of the steel reinforcement (ksi)

• In compression:

$$\sigma_{dr} = \varphi_{da} 0.85 f'_{cc} \tag{10.7.8-9}$$

where:

 f'_{cc} = confined compressive strength of the concrete according to the AASHTO LRFD Guide Specifications for Design of Concrete-Filled FRP Tubes for Flexural and Axial Members (Reference 3) (ksi) Added the following section to Article 10.7.8

FRP piles are treated as a reinforced concrete pile.

FRP piles ar treated as a reinforced concrete pile with confined concrete compressive strength.

10.5.5.2.3 - Resistance Factors for Driven Piles

Remove Table 10.5.5.2.3-1 Resistance Factors for Driven Piles and replace with the following table.

Condition/Resistance Determination Method			Resistance Factor
	Driving criteria establi least one pile per site c two piles per site cond piles	shed by successful static load test of at condition and dynamic testing* of at least ition, but no less than 2% of the production	0.80
Nominal Desting	Driving criteria establi least one pile per site c	shed by successful static load test of at condition without dynamic testing	0.75
Resistance of Single	Driving criteria establi 100% of production pi	shed by dynamic testing* conducted on les	0.75
Analysis and Static Load Test Methods,	Driving criteria establi by dynamic testing* of less than 2% of the pro-	shed by dynamic testing*, quality control f at least two piles per site condition, but no oduction piles	0.65
Ψdyn	Wave equation analysi load test but with field	is without pile dynamic measurements or confirmation of hammer performance	0.50
	FHWA-modified Gate condition only)	s dynamic pile formula (End of Drive	0.40
	Engineering News (as formula (End of Drive	defined in Article 10.7.3.8.5) dynamic pile condition only)	0.10
Nominal Bearing	Side Resistance and En α -method (Tomlin β -method (Esrig & λ -method (Vijayve	nd Bearing: Clay and Mixed Soils: nson, 1987; Skempton, 1951) & Kirby, 1979; Skempton, 1951) ergiya & Focht, 1972; Skempton, 1951)	0.35 0.25 0.40
Resistance of Single Pile - Static Analysis Methods, ϕ_{stat}	Side Resistance and End Bearing: Sand Meyerhof method SPT-method (Meverhof)		0.45 0.30
	CPT-method (Schmert End bearing in rock (In 1987)	mann) ntact Rock Method; Armitage and Rowe,	0.50 0.45
Block Failure, φ_{b1}	Clay		0.60
	Meyerhof method		0.35
	α-method		0.25
	β-method		0.20
Uplift Resistance of	λ-method		0.30
Single Piles, ϕ_{up}	SPT-method		0.25
	CPT-method		0.40
	Static load test		0.60
Group Uplift Resistance, φ _{μα}	All soils		0.50
Lateral Geotechnical Resistance of Single Pile or Pile Group	All soils and rock		1.0
Structural Limit State	Steel piles Concrete piles Timber piles FRP piles	See the provisions of Article 6.5.4.2 See the provisions of Article 5.5.4.2.1 See the provisions of Article 8.5.2.2 and See the provisions of Section 1	8.5.2.3
	Steel piles	See the provisions of Article 6.5.4.2	
Pile Drivability	Concrete piles	See the provisions of Article 5.5.4.2.1	
Analysis, ϕ_{da}	Timber piles	See the provisions of Article 8.5.2.2	
1	FRP piles	ϕ_{da} shall be taken as 1.0 for FRP piles	

*Dynamic testing requires signal matching, and best estimates of nominal resistance are made from a restrike. Dynamic tests are calibrated to the static load test, when available. Appendix A Example Structural Pile Calculation

Material Properties		
$C_{E} := 0.65$	Environmental reduction factor	
$\gamma_{\rm c} \coloneqq 0.2$	Material bias factor - compress	ion
$\gamma_t \coloneqq 0.4$	Material bias factor - tension	
$f_{fcu} := 72.0 \cdot C_E \cdot \gamma_c = 9.36$	FRP Compressive Strength (ksi)
$\varepsilon_{\rm fcu} \coloneqq 0.0217 \cdot C_{\rm E} \cdot \gamma_{\rm c} = 0.003$	FRP Compressive Strain at Fail	ure
$\mathrm{E_{fcu}} \coloneqq rac{\mathrm{f_{fcu}}}{arepsilon_{\mathrm{fcu}}} = 3318$	FRP Compressive Modulus (ksi)
$f_{ful} \coloneqq 76.0 \cdot C_E \cdot \gamma_t = 19.76$	FRP Tensile Strength (ksi)	
$\varepsilon_{\rm ful}\!\coloneqq\!0.0256\boldsymbol{\cdot} {\rm C}_{\rm E}\boldsymbol{\cdot} \gamma_{\rm t}\!=\!0.007$	FRP Tensile Strain at Failure	
$\mathrm{E_{ful}} \coloneqq rac{\mathrm{f_{ful}}}{arepsilon_{\mathrm{ful}}} = 2969$	FRP Tensile Modulus (ksi)	
f'c := 4.35	Unconfined Concrete Compress	sive Strength (ksi)
$D_i := 22.5$	Inner FRP Shell Diameter (in)	
$D_0 = 23.5$	Outer FRP Shell Diameter (in)	
$D \coloneqq \frac{\langle D_i + D_o \rangle}{2} = 23$	Avereage FRP Shell Diameter (in)
$t := \frac{(D_o - D_i)}{2} = 0.5$	FRP Shell Thickness (in)	
$E_{fl} := E_{ful} = 2969$	Longitudinal Design Modulus o	f FRP Shell (ksi)
$f_{fuh}\!:=\!25.3 \cdot C_E \cdot \gamma_t \!=\! 6.578$	Hoop Tensile Strength (ksi)	*** Stress- Strain was bi-
$\varepsilon_{\mathrm{fuh}} \coloneqq 0.0227 \cdot \mathrm{C_E} \cdot \gamma_{\mathrm{t}} = 0.006$	Hoop Tensile Strain at Failure	linear for hoop tension
$\mathrm{E_{fh}} \coloneqq rac{\mathrm{f_{fuh}}}{arepsilon_{\mathrm{fuh}}} = 1115$	Hoop Tensile Modulus (ksi)	

Flexural Resistance Factor

$$E_{e} := 1265 \cdot \sqrt{f'c} + 1000 = 3.638 \cdot 10^{3}$$

$$n := 0.8 + \frac{f'c}{2.5} = 2.54$$

$$e'_{c} := \frac{f'c}{E_{c}} \cdot \binom{n}{(n-1)} = 0.00197$$

$$\beta := 0.633 \cdot \binom{e_{fen}}{e'_{c}}^{0.237} \cdot f'c^{0.222} = 0.958$$

$$\alpha := 7.325 \cdot \binom{e_{fen}}{e'_{c}}^{0.0317} \cdot f'c^{-1.086} = 1.069$$

$$\theta := a\cos\left(1 - 2 \cdot \beta \cdot \binom{f_{fen}}{f_{fod} + f_{fen}}\right) = 1.177$$

$$t_{b} := \frac{\alpha \cdot f'c \cdot D}{4 \cdot \pi \cdot (f_{tod} - f_{tod})} (2 \cdot \theta - \sin(2 \cdot \theta)) = 1.345$$

$$\rho_{b} := \frac{4 \cdot t_{b}}{D} = 0.234$$

$$A_{FRP} := (D_{0}^{-2} - D_{1}^{-2}) \cdot \frac{\pi}{4} = 36.128$$

$$A_{toa} := 23.5^{2} \cdot \frac{\pi}{4} = 433.736$$

$$\rho_{U} := \frac{A_{FRP}}{A_{toa}} = 0.083$$

$$\frac{\rho}{\rho_{U}} = 0.083$$

Pure Flexure

Pure Axial Compression

$$E_{c} := 1265 \cdot \sqrt{fc} + 1000 = 3.638 \cdot 10^{3}$$

$$n := 0.8 + \frac{fc}{2.5} = 2.54$$

$$e'_{c} := \frac{f'c}{E_{c}} \cdot \frac{n}{(n-1)} = 0.002$$

$$e_{t_{0}} := e_{t_{10}} \cdot 0.55 = 0.003$$

$$f_{11} := \frac{(2 \cdot E_{1n} \cdot t \cdot e_{t_{0}})}{D} = 0.157$$

$$f_{12} := \left\{ \frac{\left(\frac{0.01}{2.5} - 1.5 \right)}{12 \cdot \left(\frac{e_{t_{0}}}{2.5} \right)} \right\} = 1.034$$

$$f_{12} := \left\{ \frac{\left(\frac{0.01}{2.5} - 1.5 \right)}{12 \cdot \left(\frac{e_{t_{0}}}{2.5} \right)} \right\} = 1.034$$

$$f_{12} := \left\{ \frac{\left(\frac{1.5 + 12}{2.5} \cdot \frac{f_{1}}{5} \cdot \left(\frac{e_{t_{0}}}{2.5} \right)^{0.45} \right)}{12 \cdot \left(\frac{e_{t_{0}}}{2.5} \right)} \right\} = 0.004$$

$$e_{cout} := e_{cou}$$

$$e_{cout} := e_{cout} = \left\| \left\| e_{cout} - 0.01 \right\| = 0.004$$

$$\| e_{cout} := e_{cout} \right\| = 0.004$$

$$\| e_{cout} := e_{cout} - e_{cout} \right\|$$

$$\begin{aligned} \mathbf{f}_{cc}^{\prime} &= \left\| \begin{array}{c} \text{if } \mathbf{f}_{1} = \mathbf{f}_{11} \\ \text{olso if } \mathbf{f}_{1} = \mathbf{f}_{12} \\ \text{olso if } \mathbf{f}_{1} = \mathbf{f}_{12} \\ \text{if } \mathbf{f}_{1}^{\prime} &\subset -\mathbf{f}^{\prime} (c + 3.3 \cdot \Psi_{1} \cdot \mathbf{f}_{11}) \\ \text{if } \mathbf{F}_{2}^{\prime} - \frac{(\mathbf{f}^{\prime} (c - \mathbf{f}^{\prime} (c + 3.3 \cdot \Psi_{1} \cdot \mathbf{f}_{11})) \\ \text{if } \mathbf{F}_{cc}^{\prime} = \mathbf{4.843} \end{aligned} \right. \\ \mathbf{f}_{cc}^{\prime} &= \mathbf{4.843} \\ \mathbf{P}_{n}^{\prime} &= \left(\frac{\pi \cdot \mathbf{D}_{1}^{2}}{4} \cdot \mathbf{0.85} \mathbf{f}_{cc}^{\prime} + \pi \cdot \mathbf{D} \cdot \mathbf{t} \cdot \mathbf{E}_{n} \cdot \mathbf{\varepsilon}_{ccu} = 2.069 \cdot 10^{3} \\ \mathbf{P}_{n} &= 0.85 \cdot \mathbf{P}_{n}^{\prime} = 1.759 \cdot 10^{3} \quad \text{kip} \\ \varphi_{axtal} &= .65 \\ \mathbf{P}_{r} &= \varphi_{axtal} \cdot \mathbf{P}_{n} = 1.143 \cdot 10^{3} \end{aligned}$$

Combined Flexure and Axial Compression $\alpha_1 \coloneqq 0.83$ $\beta_1 := 0.88$ $\mathbf{c} \coloneqq \left(\mathbf{D}_{\mathrm{o}} - \frac{\mathbf{t}}{2} \right) \cdot \frac{\varepsilon_{\mathrm{ccu}}}{\varepsilon_{\mathrm{ccu}} + \varepsilon_{\mathrm{ful}}} = 8.767$ $\theta_{a} := a \cos \left(1 - \frac{\langle 2 \cdot \beta_{1} \cdot c \rangle}{D_{i}} \right) = 1.251$ $M_{nb} \coloneqq \frac{\left(\pi \cdot D^{3} \cdot t\right)}{8 \cdot c} \cdot E_{fl} \cdot \varepsilon_{ccu} + \frac{D_{i}^{-3}}{12} \cdot \alpha_{1} \cdot f_{cc}^{\prime} \cdot \left\langle \sin\left(\theta_{a}\right)\right\rangle^{3} = 6.524 \cdot 10^{3}$ $M_{rb} := \varphi_{flex1} \cdot M_{nb} = 3.588 \cdot 10^3$ $P_{nb} \coloneqq \frac{(\boldsymbol{\pi} \cdot \mathbf{D} \cdot \mathbf{t})}{2 \cdot \mathbf{c}} \cdot E_{fl} \cdot \boldsymbol{\varepsilon}_{ccu} \cdot (2 \cdot \mathbf{c} - \mathbf{D}) + \frac{{D_i}^2}{8} \cdot \alpha_1 \cdot \mathbf{f'}_{cc} \cdot (2 \cdot \theta_a - \sin(2 \cdot \theta_a)) = 350.0$ $P_{rb} \coloneqq \varphi_{axial} \cdot P_{nb} = 227.502$

Appendix B Example Geotechnical Capacity Pile Calculation

Pile	Properties	
	$D \coloneqq 2 ft$	Pile diameter
	$t \coloneqq 1$ in	Pile wall thickness
	$\delta \coloneqq 29 \ deg$	Interface friction angle (FRP to granular soil)
	$A_{toe} \coloneqq 2 \cdot t \cdot \pi$	$D = 1.05 ft^2$ Area of steel driving shoe (Assume 2X pile area)
Silty	Clay Layer Pro	perties (Layer 1)
	, ,	
	$\gamma_{tot1} \coloneqq 115 \ pc$	f Total unit weight of silty clay
	$C_{u1} \coloneqq 1000 \ ps$	f Undrained shear strength
	$H_1 := 50 \; ft$	Height of clay layer
	$\gamma_w \coloneqq 62.4 \ pcf$	Unit weight of water
Gra	nular Layer Prop	perties (Layer 2)
	$\gamma_{tot2} \coloneqq 125 \ pc$	f Total unit weight of granular soil
	$\phi_2 \coloneqq 35 \ deg$	Angle of internal friction
	$H_2 \coloneqq 20 \; ft$	Height of granular layer
End	Bearing Layer I	Properties - Case A (Granular)
	$\phi_A \coloneqq 38 \ deg$	Angle of internal friction
	$\gamma_{totA} \coloneqq 130 \ pc$	f Total unit weight of granular soil at tip of pile
End	Bearing Layer I	Properties - Case B (Clay)
	$\gamma_{totB} \coloneqq 120 \ pc$	f Total unit weight of clay at tip of pile
	$C_{uB} \coloneqq 2000 \ p$	sf Undrained shear strength of clay at tip of pile

End Bearing Layer Properties - Case C (Metamorphic Rock) $q_{uC} \coloneqq 5.2 \ ksi = 748.8 \ ksf$ Unconfined compressive strength of Metamorphic Rock (from Intact Rock Method) Side Shear - Silty Clay Layer (Layer 1) $A_{s1} \coloneqq \boldsymbol{\pi} \cdot D \cdot H_1 = 314.2 \ \boldsymbol{ft}^2$ Area along side of pile in silty clay layer from FHWA for D = 25*B $\alpha_1 = 0.95$ $Q_{s1} := A_{s1} \cdot C_{u1} \cdot \alpha_1 = 298.5 \ kip$ Side shear resistance in silty clay layer Side Shear - Granular Layer $\sigma'_{v50} := \langle \gamma_{tot1} - \gamma_w \rangle \cdot H_1 = 2630 \ psf$ Effective stress at 50' depth $\sigma'_{v70} \! \coloneqq \! \sigma'_{v50} \! + \! \langle \gamma_{tot2} \! - \! \gamma_w \rangle \! \cdot \! H_2 \! = \! 3882 \, psf$ Effective stress at 70' depth $H_{limit} \coloneqq 15 \cdot D = 30 \ ft$ Limiting depth (Meyerhof Method) $\sigma'_{limit} := H_{limit} \cdot (\gamma_{tot2} - \gamma_w) = 1878 \ psf$ Constant over granular layer $K_0 = 1 - \sin(\phi_2) = 0.43$ $\tau \coloneqq \sigma'_{limit} \cdot K_0 \cdot \tan(\delta) = 443.9 \ psf$ $A_{s2} \coloneqq H_2 \cdot \pi \cdot D = 125.7 \ ft^2$ Area along side of pile in granular layer $Q_{s2} \coloneqq A_{s2} \cdot \tau = 55.8 \ kip$ Inside shear neglected σ₀≒0 psf **Total Side Shear Resistance** Effective Stress Profile w/ Depth $Q_s := Q_{s1} + Q_{s2} = 354.2 \ kip$ σ 🔙=1878 psf @ Silty Clay H_{imt}=15D=30' (Meyerhof Method) Constant Effective Stress **Below Limiting Value** Granular

End Resistance - Case A (Granular)

 $N_q = 231$ Nq* (Meyerhof Method) for phi = 38 degrees

 $Q_{pA} := A_{toe} \cdot \sigma'_{v70} \cdot N_q = 939.1 \ kip$

 $Q_{pA;limit} \coloneqq N_q \cdot \tan(\phi_A) \cdot 1 \ ksf \cdot A_{toe} = 189 \ kip$

 $\begin{array}{ll} Q_{pA} \coloneqq \text{if } Q_{pA} \! < \! Q_{pA;limit} &= \! 189 \; \textit{kip} \\ & \left\| Q_{pA} \! \leftarrow \! Q_{pA} \right\| \\ & \text{else} \\ & \left\| Q_{pA} \! \leftarrow \! Q_{pA;limit} \right\| \end{array}$

End Resistance - Case B (Clay)

$$Q_{pB} := A_{toe} \cdot 9 \cdot C_{uB} = 18.8 \ kip$$

End Resistance - Case C (Metamorphic Rock)

 $Q_{pC} := A_{toe} \cdot q_{uC} \cdot 2.5 = 1960.4 \ kip$

Ultimate Capacity (Unfactored) - Case A (Granular at Tip)

$$Q_{uA} \coloneqq Q_s + Q_{pA} = 543.2 \ kip$$

Ultimate Capacity (Unfactored) - Case B (Clay at Tip)

$$Q_{uB} := Q_s + Q_{pB} = 373.1 \ kip$$

Ultimate Capacity (Unfactored) - Case C (Metamorphic Rock at Tip)

 $Q_{uC} := Q_s + Q_{pC} = 2315 \ kip$

Factored Resistance Factors

$\phi_{lpha} \coloneqq 0.35$	phi for alpha method	
$\phi_M \! \coloneqq \! 0.45$	phi for Meyerhof Method	
$\phi_{IRM}\!\coloneqq\!0.45$	phi for Intact Rock Method	

Factored Resistance - Case A (Granular at Tip)

$$Q_{RA}\!\coloneqq\!Q_{s1}\!\cdot\!\phi_{\alpha}\!+\!Q_{s2}\!\cdot\!\phi_{M}\!+\!Q_{pA}\!\cdot\!\phi_{M}\!=\!214.6~kip$$

Factored Resistance - Case B (Clay at Tip)

$$Q_{RB} \coloneqq Q_{s1} \cdot \phi_{\alpha} + Q_{s2} \cdot \phi_M + Q_{pB} \cdot \phi_{\alpha} = 136.2 \text{ kip}$$

Factored Resistance - Case C (Metamorphic Rock at Tip)

$$Q_{RC} \coloneqq Q_{s1} \cdot \phi_{\alpha} + Q_{s2} \cdot \phi_M + Q_{pC} \cdot \phi_{IRM} = 1011.7 \text{ kip}$$

